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Abstract
The temporal profile of the electron bunch is of critical

importance in accelerator areas such as free-electron lasers
and novel acceleration. In FELs, it strongly influences fac-
tors including efficiency and the profile of the photon pulse
generated for user experiments, while in novel acceleration
techniques it contributes to enhanced interaction of the wit-
ness beam with the driving electric field. Work is in progress
at the CLARA facility at Daresbury Laboratory on temporal
shaping of the ultraviolet photoinjector laser, using a fused-
silica acousto-optic modulator. Generating a user-defined
(programmable) time-domain target profile requires finding
the corresponding spectral phase configuration of the shaper;
this is a non-trivial problem for complex pulse shapes. Phys-
ically informed machine learning models have shown great
promise in learning complex relationships in physical sys-
tems, and so we apply machine learning techniques here
to learn the relationships between the spectral phase and
the target temporal intensity profiles. Our machine learn-
ing model extends the range of available photoinjector laser
pulse shapes by allowing users to achieve physically realis-
able configurations for arbitrary temporal pulse shapes.

INTRODUCTION
In photoinjector systems, control over the longitudinal

properties of the electron bunch can be achieved through
temporal shaping of the laser pulse temporal profile [1]. Fol-
lowing the temporal shaping concept presented in [2], we
have developed an apparatus for temporally shaping the pho-
toinjector laser pulses at CLARA, shown schematically in
Fig. 1. The input laser pulse is spectrally dispersed by a trans-
mission grating. A concave mirror one focal length away
from the grating collimates the spectrum and focuses the
laser pulse to a line focus, along which the laser wavelength
varies approximately linearly. A fused-silica AOM is placed
at the position of the focus, and a transducer driven with
an RF waveform at 200 MHz central frequency generates
an acoustic wave in the AOM, which propagates along the
line focus of the laser. The laser pulses are diffracted from
the induced refractive index modulation, and the spectral
components are recombined using a second concave mirror
and transmission grating.

To shape the laser pulse temporally, the spectral phase can
be adjusted by varying the temporal phase of the acoustic
wave via the temporal phase of the RF drive wave. The
laser pulses can also be shaped temporally by varying the
temporal amplitude of the acoustic wave; however, as this ap-
proach is lossy, it is necessary to carry out all shaping using
∗ amelia.pollard@stfc.ac.uk

Input pulse

AOM

RF Waveform 
generator

Acoustic wave

Shaped output 
pulse

Transmission 
grating

Concave 
mirror

Transducer

Line focus

Figure 1: Schematic of the temporal pulse shaper at CLARA.

only the phase. In order to produce a particular target pulse
temporal intensity profile, we need to find a suitable spectral
phase mask to apply to the shaper. This is non-trivial for
arbitrary shapes, as we require both the phase and amplitude
in either the spectral or temporal domain to fully define the
pulse. However we know only the temporal intensity and the
spectral intensity, leaving the temporal and spectral phase as
unknowns with many potential solutions. The complexity
of real experimental systems poses additional challenges,
for example, there are limitations imposed by the physical
characteristics of the AOM. Modulating the spectral phase
by modulating the temporal phase of the RF wave broadens
the RF spectrum. The AOM has a finite acoustic bandwidth,
and the RF spectrum must remain within this bandwidth for
spectral phase modulations to be physically realisable.

Machine learning approaches excel for complex non-
linear problems such as this. In particular, deep neural
networks are known to be capable of approximating any
function[3], and recent work has demonstrated that such
networks can be used to learn and manipulate spectral, tem-
poral, and shape properties of laser pulses[4][5]. Recent
research has explored encoding physical laws into machine
learning models with partial differential equations as pri-
ors[6] to reduce the data requirements of these otherwise
data-intensive approaches. This approach has come to be
known as Physically Informed Neural Networks (PINNs)
and can be used to constrain the outputs of deep neural net-
works within physical reality, by encoding properties such
as conservation of energy a priori.

In this paper, we present a PINN for finding the spectral
phase mask required to produce a target temporal intensity
profile in our photoinjector laser pulse shaper, subject to the
physical limitation of the AOM bandwidth. Our approach
both reduces the data requirements of our model and con-



strains the search space within a physically realisable range.
Thus, we can be confident that predictions of temporal inten-
sity profiles produced by our model will be experimentally
achievable. Using a PINN also increases the speed with
which the required phase mask can be found, compared to
algorithmic and iterative methods.

In addition to the constraints of the physical system, we
can also encode the inherent symmetries of the underlying
physical system. By employing the principles of geometric
deep learning[7], we can choose to exploit those symme-
tries to reduce the complexity of the underlying parameter
space. In particular, we can exploit the translation-invariant
nature of the temporal pulse shape, since the structure of the
pulse signal is our primary concern and pulse timing can be
adjusted without consequence. This guides our choice of
loss function away from the mean squared error functions of
other works towards alternative signal matching algorithms,
such as the Pearson correlation coefficient. This significantly
improves our results by expanding the potential search space.

RELATED WORK
In their paper on applying an iterative Fourier transform

to this issue, Hacker et al.[8] propose an algorithm which
can quickly approximate the spectral phase corresponding
to a particular target waveform. This is done by iteratively
performing a Fourier transform into the spectral domain, cor-
recting for differences between the current and target spec-
trum, and then transforming back into the time domain and
correcting for temporal amplitude differences. This process
is repeated until an adequate match is found. This achieves
results comparable with a genetic algorithm approach but in
a significantly shorter time.

In their work on applying neural networks to predicting
temporal and spectral pulse profiles in optical fibres, Boscolo
et al.[4] demonstrate that supervised models are capable of
learning the complex relationships between temporal pulse
shape and spectral intensity. They also used a neural net-
work to determine the non-linear propagation properties of a
pulse observed at the fiber output and classify output pulses
according to the initial pulse shape.

Though their work concerns spatial shaping as opposed
to the temporal shaping discussed here, Xu et al.[5] demon-
strate that neural networks are again capable of learning to
manipulate laser profiles with an SLM to generate arbitrary
output shapes.

For a more complete overview, see Genty et al.’s re-
view[9].

METHODOLOGY
Using simulated data, we developed and tested a machine

learning model to find the required phase mask to achieve
a particular target pulse temporal profile. The simulated
laser pulses used for training and testing the model have a
spectral intensity with Gaussian shape in wavelength, central
wavelength of 266 nm, and FWHM bandwidth of 1.5 nm.

As pulses in the CLARA photoinjector laser system are tem-
porally stretched in a grating stretcher before entering the
shaper, our simulated unshaped pulses have 8 × 104 fs2 of
spectral phase applied. For our training set, we generate 105

pairs of spectral phase profiles and corresponding temporal
intensity profiles, with a further 103 pairs generated for the
test set. Each pair consists of a spectral phase profile consist-
ing of 2642 samples over 5.78 nm and a temporal intensity
profile of 294 samples over 12 ps.

So we can constrain our model to the physical limits of the
AOM bandwidth, we consider the effect of AOM bandwidth
on the spectral phase mask. Modulating the temporal phase
of the RF drive wave broadens its spectrum; the instanta-
neous RF frequency at a particular point in time is given by
the gradient of its temporal phase at that point. The AOM
bandwidth limits the gradient of the acoustic wave temporal
phase modulation, and consequently the limits on the avail-
able phase modulation per unit length along the acoustic
wave propagation direction are

d𝜑
d𝑥

= ±𝜋Δ 𝑓ac
𝑣ac

, (1)

where 𝜑 is the phase modulation, 𝑥 is the spatial coordinate
across the AOM window, 𝑣ac = 5968 m s−1 is the acoustic
velocity in fused silica, and Δ 𝑓ac ≈ 100 MHz is the AOM
acoustic bandwidth. The change in laser wavelength per unit
length across the AOM window is

d_
d𝑥

≈ Δ_

𝑊
, (2)

where Δ_ ≈ 5 nm is the optical bandwidth covered by the
AOM window, and 𝑊 = 20 mm is the width of the AOM
window. From Eq. 1 and Eq. 2, the limits on the laser spectral
phase gradient are therefore

𝑔𝜑 =
d𝜑
d_

≈ ±𝜋Δ 𝑓ac𝑊

𝑣acΔ_
. (3)

For our experimental parameters, 𝑔𝜑 = ±𝜋/0.015 rad/nm.
To encode this physical limit associated with the AOM

bandwidth into the network, we developed a regulariser
which acts to limit the gradient of the spectral phase profile
to a physical limit of 𝜋/0.015 rad/nm, corresponding to a
maximum phase change per wavelength step of 𝛿𝜑 ≈ 0.153𝜋
rad/step. For the purposes of limiting the gradient over a dis-
crete sampling, we define the discrete gradient as Eq. 4. To
account for the cyclic nature of angular frequency in a differ-
entiable manner, we calculate the gradient by projecting into
the complex plane. We then take the absolute value of the
discrete gradient of the network’s output vector. We multiply
the resulting function by a high-gradient sigmoid function
with an offset of 𝛿𝜑 to provide a differentiable approxima-
tion of a step function. Since 𝑅𝑒(𝑒𝑖 \ ) bounds between −1
and 1, and the input is between −𝜋 and 𝜋, we divide 𝛿𝜑 by
𝜋 to arrive at the final definition for the regulariser, shown
in Eq. 5. Note that the first and last elements are masked out
from the difference calculation, since we are not concerned



with forcing the spectral phase profile to begin and end at 0
rads.

The loss function encodes the translation invariant na-
ture of temporal pulse shaping by calculating the Pearson
correlation coefficient of the target temporal pulse profile
against the temporal pulse profile simulated from the spectral
phase profile output by the network. The simulation code is
made differentiable by the Keras[10] framework, allowing
the training of the network to be guided by the gradient of
the underlying function space. This further encodes physical
laws into the network.

Δ+ ( 𝑓 ) = 𝑓𝑖 − 𝑓𝑖+1 (4)

1
𝑁

∑︁
|Δ+ (𝑒𝑖𝜑 (𝜔) ) | ∗ [𝜎( |Δ+ (𝑒𝑖𝜑 (𝜔) ) | − 𝛿𝜑/𝜋); [ = 100

(5)
The architecture for the network is a simple deep neural
network with three hidden layers using the ReLu[11] activa-
tion function, with batch normalisation between the layers.
The final output layer uses a linear activation function. We
use the Adam optimiser[12] with a learning rate schedule
decaying from 0.001 at a rate of 𝑒0.001 per epoch after the
first 100 epochs.

RESULTS
We find that with the application of the principles of phys-

ically informed networks enables the proposed system to
learn to extrapolate appropriate spectral phase profiles for
arbitrary temporal pulse shapes in linear time, which are
both accurate and contain no non-physical phase transitions.
This allows users to specify arbitrary temporal pulse pro-
files and receive an input for the SLM which will provide
that profile within milliseconds, a significant advantage over
algorithmic and iterative methods.

As in other works, we calculate the mean squared error
(MSE) of the output temporal intensity profile against those
in the test set, and find strong agreement (6.4e−3 ± 3.7e−5
MSE over 10, 000 samples). Indeed, our results match sim-
ulation extremely well, as can be seen in Fig. 2. We are also
able to specify a wide variety of target pulse shapes which
are well outside of those described in the test set, and re-
ceive matching physically realisable spectral phase profiles
which generate them well, as in Fig. 3. Without the limita-
tions of the SLM it is possible to achieve very high quality
matches to the target patterns, however these are not physi-
cally achievable since they require spectral phase transitions
well beyond what is physically possible. However, with the
physical limitations imposed by the PINN, we achieve high
quality matches to arbitrary temporal phase profiles which
are physically realisable.

CONCLUSION
By using physically informed networks we can build better

machine learning models which more accurately model the

Figure 2: Randomly selected example from the test set, show-
ing spectral phase mask and spectral intensity (top), and
pulse temporal phase and temporal intensity profile (bot-
tom). The predicted temporal pulse shape is an excellent
match to the ground truth.

Figure 3: Demonstration of solutions found for arbitrary
pulse shapes. In particular note that these are physically
realisable due to the gradient constraint.

reality of the target system. In doing so, we develop a model
for predicting spectral phase profile configurations for photo-
cathode laser at CLARA, to enable arbitrary specifications
of temporal pulse profiles for fine control over the bunch
profile. In future work, we intend to deploy this system on
the CLARA facility to enable fine temporal pulse shaping
and expansion into bunch profile specification, with an eye
toward use in FEL research.
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